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Abstract

This paper serves as a tutorial to introduce the wind

tunnel research community to configuration experiment

designs that can satisfy resource constraints in a

configuration study involving several variables, without

arbitrarily eliminating any of them from the experiment

initially. The special case of a configuration study

featuring variables at two levels is examined in detail.

This is the type of study in which each configuration

variable has two natural states - _on or off,,, _deployed

or not deployed", _low or high", and so forth. The

basic principles are illustrated by results obtained in

configuration studies conducted in the Langley National

Transonic Facility and in the ViGYAN Low Speed

Tunnel in Hampton, Virginia. The crucial role of

interactions among configuration variables is

highlighted with an illustration of difficulties that can

be encountered when they are not properly taken into

account.

The application of a sequential test strategy is

illustrated for configuration testing, in which a single,

large-scale test matrix is replaced with a coordinated

series of smaller tests. Information obtained earlier on

informs decisions made in subsequent tests in the same

series. Each test typically features a small subset of all

the possible combinations of configuration variable

levels, judiciously selected to quantify main effects and

likely lower-order interactions. This information is

obtained at the expense of reduced information about

higher-order interactions that are less likely to exist,

and less likely to be important if they do exist.

Substantial cost and cycle-time savings are achieved at

the expense of somewhat reduced precision in
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estimating main and interaction effects. This reduced

precision can cause some ambiguity in the estimated

magnitude of those effects, especially for the case in

which significant higher-order interactions exist.

Techniques are discussed for augmenting the

experiment design in order to efficiently resolve these

ambiguities. This augmentation phase enables higher

precision to be achieved for the case of main effects

and/or interactions identified as especially important in

earlier fractional factorial testing, without requiring an

unnecessarily large number of additional configurations

to be set.

Nomenclature

alpha
CMXS

defining
relation

design

generator

design matrix

design space

factor

GWB

interaction

LEX

main effect

angle of attack

stability-axis roll moment coefficient

a device for determining aliasing

patterns in fractional 2-level factorial

designs

one of the candidate effects in a

two-level factorial design used to

determine the assignment of

individual data points to specific

design fractions.

a test matrix augmented with columns

for higher-order terms and a column
of +1 values

a Cartesian coordinate system in

which each axis represents an

independent variable. Every point in

this space corresponds to a

unique combination of independent

variables.

an independent variable

Generic Winged Body

a condition in which the effect on

system response of a change in one

independent variable depends on the

level of another

leading edge extension

change in response due to change in

specified independent variable
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MDOE
OFAT
tableofsigns

testmatrix

ModernDesignofExperiments
OneFactorAtaTime
a designmatrix for a two-level
factorialexperimentinwhichlowand
high valuesof eachfactor are
representedby4-1 values.

an array of numbers in which each

column corresponds to a factor and

each row corresponds to a data point.

The elements of the array are factor

levels for that data point.

Introduction

A major category of wind tunnel testing that is

broadly described as _%onfiguration testing" is

especially resource intensive because it typically

involves numerous changes to the wind tunnel model

itself. Unlike changes in model attitude (e.g., angle of

attack, angle of sideslip) and changes in flow state (e.g.,

Mach number, dynamic pressure) that can often be

performed remotely, configuration changes generally

require access to the model. Accessing the model to

change a configuration variable involves several labor-

intensive and time-consuming procedures that are not

required to change other types of variables. In major

wind tunnel facilities, tunnel ingress and egress

involves detailed procedures dictated by safety

considerations, for example. The configuration changes

often involve the construction and subsequent

dismantling of scaffolding around the model. The

configuration changes themselves typically entail the
removal and insertion of dozens of fasteners and

connectors of one type or another. Often the changed

response surfaces must be re-dressed with grit or trip

dots, which must then be inspected. Extra care and

inspection are required to assure that intended changes

in a configuration variable do not result in unintended

changes to other elements of the model such as

misaligmnents or surface blemishes, a risk that is

incurred any time the model is physically handled

during a test.

Other factors can be associated with changing

configuration variables in special circumstances, which

are not encountered with changes in other types of

variables. For example, when configuration changes

are made in a cryogenic wind tunnel, it is necessary to

wait several hours before the model temperature

stabilizes around a level that it can be safely handled.

Several hours are usually then required to re-acquire

cryogenic test temperatures. There is also the risk in

any cryogenic tunnel entry that trace levels of moisture

can be introduced into the circuit, which can condense

as frost when the temperature is subsequently reduced

to cryogenic levels. If the frost condenses on the

model, it can directly affect the forces and moments,

and if it condenses elsewhere, it can affect such factors

as flow quality. Even if the tunnel is not cryogenic, a

certain amount of time is required after flow is re-

established following a tunnel entry, to stabilize testing

conditions as much as possible.

A further complication in configuration testing is

the fact that there is often a bewildering array of

combinations of configuration variables. Imagine that

the researcher is interested in examining two basic wing

geometries, say, each with two aileron designs, two

trailing edge flaps, two leading-edge slats and two sizes

of leading edge extension (LEX), with each LEX either

relatively inboard or relatively outboard of some

reference location on the wing. In addition, there is

interest in the effect of including canards or not, and of

including strakes or not. There is also interest in all

combinations of these configurations when the speed

brake is deployed and when it is not, and for landing

stability the gear up and gear down configurations are

of interest. Finally, the researcher would like to

examine a range of deflection angles for the flap and

aileron for each combination of the other configuration

variables.

The scale of this hypothetical specification of

configuration variables is by no means extreme

compared to real configuration testing. Yet even if the

researcher were content to limit control surface

deflections to only two levels ¢_low" and _high", say),

this configuration test as described would entail over

4,000 configuration changes to test all combinations.

Conditions vary from tunnel to tunnel but even under

the best of circumstances this many configuration

changes would be expected to take a lot of time. For

example, while veteran researchers would probably

consider four such configuration changes per eight-hour

shift as ambitious for planning purposes, even at that

rate this test would require approximately two years of

wind tunnel time, even in a two-shift/day operation.

Beyond the enormous direct operating expense and

prolonged cycle time that such a comprehensive plan of

test would entail, there are also subtle adverse impacts

on quality that are easy to overlook. Over such a

prolonged time period there can be systematic

variations due to unexplained seasonal effects, for

example, or long-term wear of facility subsystems.

There can also be technology advances that result in

subtle unexplained variations between sets of data

acquired earlier and those acquired later in prolonged

test programs. For reasons of cost, quality, and time,

therefore, it is in the best interest of all concerned to

reduce the scale of configuration testing as much as

possible.
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Facedwiththepracticalnecessityto scalethe
configurationtestplanto meetresourceconstraintsof
timeandmoney,theresearcherhasfewoptionsother
thantoselectasubsetofallthepossibleconfigurations
forexamination,postponingotherconfigurationsuntil
anothertime.Thisisoftenaccomplishedbydropping
certainvariablesfrom the testplanthat in the
researcher'sjudgmentareof secondaryinterestto
certainothervariablesthathavea highpriority.
Perhapsthistimewewillnotincludethecanardsorthe
strakes,for example,andwewill savethegearand
speedbrakestudiesforanothertime.Wemayalsoonly
focusononeofthetwocandidatewingshapes.These
changeswouldreducetheconfigurationsintheoriginal
plantoanumberthatcouldbeexaminedin3-6weeks
in atwo-shiftoperation,assuming2-4configurations
pershift.Thiswouldstillbeanambitiousplan,buta
plausibleone.

Thereareobviousshortcomingsto thistypeof
concessionto resourceconstraints,andtherearealso
othershortcomingsthatmaybe lessobviousbut
potentiallyevenmoreseriousin thattheycanleadto
improperinferences.Clearlythetestwillsufferfroma
lackofinformationobtainedaboutthemaineffectsof
thevariablesdeletedfromtheplan. However,in
additionto theabsenceof informationonthemain
effectsof individualvariables,thereis alsolost
informationoninteractioneffects.In thehypothetical
exampleweareconsidering,wehavedecidedtoretain
theLEXfor investigation.However,it is entirely
possiblethattheperformanceof theLEXwouldbe
differentif weincludedcanardsin theconfiguration,
forexample.Sobydroppingthecanards,notonlydo
weloseinformationabouttheirdirecteffectsonthe
forcesandmoments,butwealsoloseinformationon
howtheyimpacttheperformanceof theleadingedge
extension.A decisiontoselectoneLEXgeometryover
anothermightbemadedifferently,forexample,if the
influencethatcanardsandstrakeshaveon LEX
performancewasbetterunderstood,or if anyof the
otherdeletedconfigurationshadbeenexaminedin
conjunctionwiththeLEX.Thesameisobviouslytrue
forinteractionsinvolvingotherconfigurationvariables
aswell.

Wewillexamineastrategyforselectingasubsetof
configurationsthatdoesnot requirethewholesale
deletionofindependentvariablesfromthetestplan.It
is possibleto retainin thetestall of theoriginal
independentvariables,butto judiciallyselectonlya
relativelysmallsubsetofthepossiblecombinationswe
wouldhavesetwithaconventionalfull-scaletestplan.
Notwithstandinghowsmallit is,thesubsetischosenin
sucha waythatit providesessentiallyall of the
informationthatthe full experimentwouldhave

yielded,butwithasubstantialreductionincycletime
andassociatedexpenses.Asanimportantbonus,this
methodalsoquantifiesthe interactioneffects,and
eliminatesfrom the unexplainedvariancea large
componentattributableto systematicvariationsthat
persistover time. Suchlong-termunexplained
systematicvariationcanbeduetoinstrumentationdrift,
temperatureor otherenvironmentaleffects,andeven
operatorfatigueor learningeffects(a common
phenomenonin whichthe operator'sperformance
improveswithpractice).Suchsystematicvariation
generallyaccountsfor considerablymoreuncertainty
thancanbeattributedtotheordinarychancevariations
indatathatcomprisethemainfocusof conventional
uncertaintyanalysis.

Weassertthatagreatdealofwastedeffortoccurs
in configurationtestingthatcanbeattributedto our
relianceuponanespeciallyinefficientexperimental
methodologyknownasonefactoratatime(OFAT)
testing.OFATpractitionerssystematicallyvaryone
independentvariableatatimewhileholdingallother
variablesconstant.Thestandardwindtunnelprocedure
ofvaryingangleofattacksystematicallywhileholding
constantall othervariablessuchasMachnumberand
modelconfigurationis anexampleof howOFAT
methodsareroutinelyusedinexperimentalaeronautics.
Thissameimpulsetoholdallothervariablesconstant
whileexaminingonlyoneatatimehasanespecially
deleteriouseffectontheproductivityof configuration
testing.Wewill proposeanalternativeteststrategy
knownas"factorial"testing,inwhichall independent
variablesaresubjectto changewitheachnewdata
point.Forexample,whereanOFATconfigurationtest
planmightcallforaseriesofpointsinwhichallother
variablesareheldconstantwhilethedeflectionangleof
anaileronischanged,afactorialdesignwouldtypically
callforallotherindependentvariablestobechangedas
wellastheaileron.Factorialdesignsthusattackall
independentvariablesinparallel,notserially,oneata
time. Not only doesthis increaseproductivity
significantly,requiringmanyfewertotalconfiguration
changes,it alsofacilitatesthestudyof interactions
amongtheindependentvariablesthatOFATmethods
arenotwell-suitedtoquantify.

Efficientfactorialdesignshavebeenwidelyusedin
industrialengineeringdisciplinesfor manyyears,
especiallythosethatfocusonprocessandproduct
optimization. They are less well knownin
experimentalaeronautics,however,notwithstanding
theirconsiderablepotentialin suchapplicationas
configurationtesting.Thispaperisthereforeintended
primarilyasatutorialintroductionoffactorialmethods
thatarenot widelypracticedat this timein the
aerospaceindustry,but that nonethelesshave
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significantpotentialfor costsavingsaswellasfor
insightsintotheinteractioneffectsthatgovernhow
independentvariablesoperatejointly to influence
systemresponse.Asnoted,theycanalsoimprovethe
qualityofexperimentalresultssubstantially.

The Role of Interactions

Factorial experimentation has an important

advantage over conventional OFAT testing in that it is

capable of detecting and quantifying interactions among

independent variables. This advantage can best be

illustrated with an example. We will consider a two-

factor configuration test that was recently conducted in

the National Transonic Facility at Langley Research

Center using an advanced extension of the basic

factorial techniques we will introduce in this paper.

These advanced techniques taken as a whole are

referred to as the Modem Design of Experiments

(MDOE), which is being developed at Langley as a

proposed replacement for the weaker OFAT techniques

in common use in the aerospace industry at the end of

the 20 th century.

MDOE extends factorial design to include various

tactical quality assurance measures that enable the

researcher to assume a greater role in ensuring quality

through the design of the experiment. 1'2 MDOE

methods also focus on matching resources to the

specific objectives of an experiment to ensure that

ample resources are planned for the tasks at hand but

that resources are not wasted, as by the gratuitous

acquisition data in volumes that far exceed what is

needed to control inference error risk. (The MDOE

productivity doctrine dictates that inferences be drown

at high rate, not that data be collected at a high rate)

Excess resources beyond what is needed for a particular

purpose are therefore applied to achieving additional

insights, rather than acquiring additional data to drive

the inference error probability for one specific objective

even lower, after risk levels declared acceptable by the

principal investigator in the formal planning process

have already been achieved.) The full application of

MDOE methods also entails advanced analysis

techniques, in which unexplained variance and the

associated uncertainty in experimental results is

precisely characterized. These methods also focus on

forecasting the response of the system to a general

population of potential independent variable

combinations, based on the responses to a sample of

independent variable combinations observed in the

experiment.

The entire spectrum of MDOE methods is beyond

the scope of this paper, which nonetheless does focus
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Deflection re Nominal,coded units

Figure 1. OFAT method reveals no CL improvement

when deflection varied while holding normalized

gap constant at nominal level.

on a key MDOE concept; namely the advantage of

factorial methods over OFAT techniques. Consider the

configuration study referenced above, in which one of

the objectives was to define the combination of flap

deflection and gap between the flap and the trailing

edge of the wing that maximized lift for the approach

configuration of a commercial jet transport. 4 The

conventional OFAT approach to this objective would

be to hold one of the variables constant at some

nominal level - gap, let us say - while systematically

varying the other (flap deflection) to find where lift is

greatest. Having thus determined the optimum flap

deflection, the flap would be held constant in this

position while the gap was varied, again seeking the

greatest lift. (We emphasize that OFAT methods such

as these were not used in this experiment. We cite them

here simply to illustrate a typical OFAT approach to

such problems. The MDOE method that was actually

used resulted in a response model of lift as a function of

flap deflection and gap that enables us to forecast lift

within specified precision intervals for all combinations

of flap deflection and gap in the design space. Here we

simply use this response model to simulate the results

that a typical OFAT approach would have generated, as

a pedagogical demonstration.)

Figure 1 represents five measurements of approach

lift at different flap deflections uniformly distributed

over the full range of deflection angles of interest in this

experiment. Error bars represent a "two-sigma"

precision interval half-width of 0.005 in lift coefficient

as specified in this experiment. The data are presented

as change in lift coefficient relative to that which is

achieved with the nominal flap deflection angle, plotted

against departures from the nominal flap deflection

4
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Figure 2. OFAT method reveals CL improvement of

0.0106 when normalized gap reduced by 0.32 in

coded units, deflection held constant at nominal

level.

angle in coded units, where 0 represents no change

from nominal flap deflection. There is no obvious trend

in the data and in fact the 95% confidence interval for

the slope of a least-squares straight line fit to these data

extends from -0.0072 to +0.0032. Since this interval

includes 0, we conclude (with an inference error risk of

no more than 5%) that with a nominal gap setting,

changes in flap deflection over the range investigated

provide no significant increase in lift. We therefore

have no basis for recommending a flap deflection other

than the nominal setting when the gap is nominal.

Having now established that the nominal flap

deflection is optimal over the range we are considering,

the OFAT practitioner would then hold that factor

0.06

0.04 i
0.02

E
o 0.00

d -0.02

-0.06

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Deflection re Nominal, Gap=-0.32

Figure 4. OFAT method reveals CL improvement of

0.0538 when normalized gap held constant at -0.32

in coded units, and deflection increased by 1.0 in
coded units.

1.OO-.

0"50t

 oooj

"0"501

-1,00- r
-1.00

D _CL= 0.0106

I I

-0.50 0.00 0.50
Flap Deflection

4.00

Figure 3. OFAT lift optimization. Changing one

factor at a time starting with flap deflection angle.

constant at the nominal (optimum) level and vary gap.

Figure 2 shows what the result would be. It suggests

that some increase in lift coefficient (0.0106) could be

achieved by reducing the size of the gap by 0.32 in the

coded units of the figure. The manufacturer would

have to decide if the tooling costs and other production

expenses associated with reducing the gap would be

justified for an improvement in lift of only a factor of

two times the experimental error budget. If not, then

the decision would be to retain the nominal set points

for flap deflection and gap. Figure 3 shows where the

optimized set point appears within the design space

when the factors are varied one at a time, starting with

flap deflection.

One of the weaknesses of the OFAT approach to

optimization can be illustrated by repeating the

experiment with the order of the variables reversed; that

is, with the deflection first held constant at its nominal

level while the gap is optimized, followed by holding

the gap constant at the optimum level while the

deflection is optimized. Figure 2 corresponds to the

first step, which suggests that a gap setting in coded

units of -0.32 would maximize lift at nominal flap

deflection, as before. Figure 4 is a plot of change in lift

as a function of change in deflection from nominal, at

the OFAT optimal gap of -0.32 in coded units. Clearly,

there is a trend of increasing lift with increasing

deflection at this gap setting. Note also that the flap

deflection that maximizes lift apparently lies outside the

range of deflection angles tested. That is, figure 4

suggests that the performance of the wing could be

improved by increasing flap deflection beyond the

largest value set in the experiment. However, within

5
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Figure 5. OFAT lift optimization. Changing one

factor at a time starting with gap.

the design space of the experiment, the gap and

deflection set points that appear to maximize lift with

this ordering of the variables are, respectfully, -0.32 and

+1.0 in coded units. Optimizing the deflection at a gap

setting of -0.32 adds 0.0538 to the maximum lift

coefficient. This is on top of the 0.0106 achieved by

optimizing the gap, for a total OFAT improvement of

0.0644 when gap is optimized first and deflection is

optimized second. Figure 5 shows where the optimized

set point appears within the design space when the

factors are varied one at a time, starting with gap.

The essence of Figure 5 can perhaps be most

succinctly captured by noting that it is not figure 3.

That is, the OFAT technique produces two substantially

different results, depending on the order in which one

factor is held constant while the other is varied. Since

the order is determined arbitrarily by the researcher,

this is a troubling development. However, it is not the

most troubling development, as figures 6 and 7 reveal.

The most troubling aspect of the OFAT approach to

optimization is not so much that the results depend on

the order in which the researcher decides to investigate

the variables, unsettling as that is. The most serious

difficulty is that under commonly occurring

circumstances in which the independent variables

interact, these OFAT optimization procedures produce

the wrong answer no matter which variable is examined

first.

Figure 6 reveals the source of the difficulty. It

displays contours of constant lift coefficient throughout

the design space. Each contour represents a change in

lift relative to the original nominal combination of flap

defection and gap that corresponds to the coordinates

Figure 6. Changing both gap and deflection results

in a greater improvement in lift than changing either
one alone.

(0,0) in the coded units of this figure. It is clear from

this figure why the OFAT procedure is inadequate in

this situation. A path that traverses the design space in

a direction that is parallel to either axis (which

corresponds to holding one factor fixed while varying

the other) will sometimes be more parallel to the

contour lines and sometimes more perpendicular.

Relatively little change in lift occurs on paths that are

nearly parallel to the contour lines, while paths that are

perpendicular encounter relatively more change in lift.

For example, it is clear from figure 6 why the initial

OFAT procedure resulted in an impression that with a

nominal gap setting, changes in flap deflection had little

effect on lift over the range of changes in this

experiment. There is a contour of constant lift that runs

through the original nominal configuration set point at

(0,0) that is essentially parallel to the deflection axis at

that gap setting. Therefore changes in deflection at this

gap setting do little to change lift. However, a change

in deflection clearly does result in a change in lift at

other gap settings. For example, increasing deflection

with the gap set at -1 in coded units results in a rapid

increase in lift with flap deflection.

We have a situation in which the change in lift

induced by a given change in flap deflection is different

at one gap setting than another. That is, there is an

interaction between flap deflection and gap. One of the

interesting consequences of this interaction is that even

though changing deflection from 0 to 1 in coded units

has a negligible effect on lift with the gap held constant

at 0, and changing the gap from 0 to -1 with the

deflection held constant at 0 actually decreases the lift,

when both changes are made together the lift increases

6
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0.15

c

0.10
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Figure 7. MDOE achieves greater lift improvement

by accounting for interaction effects. OFAT results

depend on the order that the variables are examined,

because interactions are not taken into account.

substantially. Figure 7 compares the two different

OFAT results with the improvement that could be

realized if interaction effects were taken into account by

varying both factors at the same time rather than one at

a time. Accounting for interactions in this way results

in considerable improvement over either OFAT result.
Interaction effects such as this are not uncommon

in experimental aeronautics and in fact they are the

general rule; it is rare to encounter independent wind

tunnel variables that do not interact with each other.

Furthermore, interactions among more than two

variables are not unusual. If the degree of interaction

between flap deflection and gap is different at one angle

of attack than another, say, then there would be a three-

way interaction involving deflection, gap, and alpha. If

this three-way interaction changed with Reynolds

number, there would be a four-way or 4th-order

interaction, and so on. Understanding such interactions

provides rich insights into the underlying physics of the

process under study. Conversely, a failure to appreciate

interactions can produce the kinds of results illustrated

in figures 3 and 5 - results that are inconsistent, and
erroneous. The fact that OFAT methods are so

maladroit at illuminating interaction effects is one of

their principal weaknesses, especially for applications

as rich in interactions as configuration testing.

Two-Level Factorial Designs

Factorial experiment designs offer an attractive

alternative to OFAT testing in those ubiquitous

circumstances when interaction effects are important.

Figure 8 illustrates how a factorial experiment might

have been applied to the lift optimization problem, for

1.00-.

0.50

!!!
A
w

i i
-I .00 -0.50 0.00 0.50 1.00

Flap Deflection

Figure 8. Factorial lift optimization. Changing both
factors at the same time.

example. This figure represents the layout for a

particularly efficient class of factorial designs called

two-level factorials, which we will treat in this paper.

In a two-level factorial design, each factor is set at only

two levels. These levels are typically assigned the

descriptors _low" and _high" to distinguish one from

the other, although the labels are arbitrary and apply

equally well to quantitative variables that may actually

have relatively low and relatively high levels such as

flap deflection and gap in this example, or to

categorical two-level variables that may have values

such as _gear up, gear down", _%anards on, canards

off,,, etc.

The reader may be uneasy about an experiment

design that features only two levels of important

independent variables, because two levels permit only

first-order pure effects to be described. Effects such as

within-variable curvature require more than two points.

However, early in a configuration experiment it may be

premature to consider relatively high-order effects.

Often the initial objective of a complex configuration

study is to arrive quickly at insights that enable is to

focus subsequent resources on variables that most

significantly impact the response of the system. The

two-level factorial designs that facilitate these early

insights can be augmented efficiently later in the

investigation, to provide additional levels of the

variables for which higher-order effects are of interest.

Table 1 is a test matrix for the two-variable, two

factor experiment represented schematically in Figure

8. The factors A and B represent flap deflection and

gap, respectively, and the _high" and _low" levels are

represented by _+1" and _-1", as is a common

7
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convention.Forthedesignof figure8,theselowand
highvaluesreferto thecodedvalues0 and+0.5,
respectively,forfactorA (deflection).Theyreferto
codedvalues-0.5and0, respectively,for factorB
(gap). Thethirdcolumnliststhe changein lift
coefficientateachpointrelativetothenominalsetting
fordeflectionandgap,denotedby(0,0)incodedunits.

Table I. Factorial test matrix,

with response vector

A B ACL

-1 -1 0.0070

-1 1 0.0000

1 -1 0.0500

1 1 -0.0018

We define the _main effect" for factor A as the

change in response that results from changing factor A

from its low level to its high level. Note in Table I,

however, that we can make this change at either of the

two levels of factor B. With factor B at its low level,

changing factor A from low to high results in a change

in system response from 0.0070 to 0.0500, or an A

effect at low B of 0.0500 - 0.0070 = 0.0043. Similarly,

the A effect at high B is -0.0018 - 0.0000 = -0.0018.

The overall A effect is defined as simply the average of

these two values, or (0.0043 - 0.0018)/2 = 0.0206. The

B effect is defined analogously.

The definition of these main factor effects and the

layout of Table I suggest a general algorithm for

computing the main effects. The column of factor

levels is simply multiplied term by term times the

column of responses, and the products are summed.

The result is then divided by the number of _+1" values

in the factor column - always half the total number of

rows in designs such as this. For example, using this

algorithm to compute the main A factor effect, we see

from Table I that it is [-0.0070 -0.0000 +0.0500

+ (-0.0018)]/2 = 0.0206. Similarly, the B effect is -

0.0294.

Note that the A effect is computed at both levels of

the B factor and then averaged. No matter how many

factors there are in the experiment, the general

algorithm for estimating main effects computes them at

all combinations of all levels of the remaining factors

and then averages those results. We say because of this

that the two-level factorial experiment design enjoys a

_wide inductive basis". A large main effect is therefore

a more reliable indicator that this variable is important

than if it had been estimated for only a limited

combination of the remaining variables.
Interaction effects can be estimated much like the

main effects. We define the AB interaction as half the

difference between the A effect at high B and the A

effect at low B. (The factors can be reversed in this

definition so that the AB interaction is also half the

difference between the B effect at high A and the B

effect at low A. Both give the same numerical result.)

The A effect at high B was -0.0018 and at low B it was

0.0043. The AB interaction is therefore (-0.0018

- 0.043)/2 = -0.0224. The minus sign indicates that in

this region flap deflection and gap are compensating

variables. That is, the effect on lift of a decrease in flap

deflection can be offset by an increase in gap.

Table II. Factorial design matrix,

with response vector

Constant A B AB ACL
1 -1 -1 1 0.0070

1 -1 1 -1 0.0000

1 1 -1 -1 0.0500

1 1 1 1 -0.0018

The same algorithm for computing main effects

can be applied to compute the interaction effect if a

suitable column of 4-1 values is provided for the

interaction. That column is easily obtained by

multiplying corresponding levels in the main factor

columns, producing the AB column in Table II. When

a conventional test matrix such as in Table I is

augmented with columns for higher order (interaction)

terms and a column of +1 levels is added on the left

side as in Table II, the resulting matrix is called the

design matrix. The role of the column of +l's will be

described shortly. For now, note that multiplying term

by term the 4-1 levels in the AB interaction column by

the corresponding response values, summing, and

dividing by the number of plus signs, yields [(+0.0070

-0.0000 -0.0500 +(-0.0018)] = -0.0224, the value we

computed above from the definition of the interaction.

That is, the same algorithm that worked for the main

effects also works for the interactions. The design

matrix, also called the table of signs, is therefore a

convenient structure for computing all main effects and
interactions.

The design matrix concept expands in a

straightforward way to accommodate any number of

factors. A three-factor two-level design would have

columns for factors A, B, and C, say, with two-way

interaction columns for the AB, AC, and BC interaction

effects. There would also be a column for the ABC

three-way interaction, generated by multiplying 4-1

values in the A, B, and C columns term by term just as

for the two-way interactions. The ABC three-way

interaction is defined analogously to the two-way

interactions, in that it is half the difference between the

8
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ABinteractionathighCandtheABinteractionatlow
C. (Asbefore,thedefinitionis thesamenomatter
whichof themaineffectsis labeledA, B, or C.)
However,it is generallymoreconvenientto estimate
thethree-wayinteractionusingthetableof signs
algorithmthantoapplythedefinitiondirectly.

Two-Level Factorials for Optimizing Response

In an optimization problem, it is convenient to

envision the response as a function of the independent

variables that can be represented as a surface over the

design space. In this case of the lift optimization

problem, the height of the response surface above the

design space is proportional to lift, and we seek the

location in the design space where this surface peaks.

The geometric model is useful for distinguishing

between locations that are near the peak and those that
distant from it. Points that are not in the immediate

vicinity of a peak are often on more or less planar

slopes of the response surface. The researcher has an

opportunity early in a factorial experiment to determine

whether or not the design is centered near an extremum

such as a peak.

One technique for estimating proximity to a

response surface peak is to compare the average

response at all points in the design (the four comers

indicated in figure 8, say), with a point at the center of

the design. The center point for the design represented

in figure 8 would be at (+0.25, -0.25) in coded

variables. If the response at the center point is roughly

the same as the average of the responses at the comer

points, it suggests that the response is relatively planar

in this region and that the peak is therefore not in the

local region. In the case of the lift optimization

problem, the average of the comer responses can be

estimated from the responses in Table I. The average is

0.0138. That is, the average deviation from the lift

coefficient at nominal deflection and gap settings

measured at the four comers of this design is 0.0138.

The center-point value was 0.0204 in this case. The

difference is only 0.0066, which is not large compared

to the 0.005 error budget for this experiment.

(Assuming an 0.005 two-sigma uncertainty in each

individual estimate of lift coefficient, a difference of

0.0066 between the center point and a four-point

average of the comers is too small to resolve with 95%

confidence, for example.) We conclude therefore that

because the response measured at the center of the

design in figure 8 is roughly in the same plane as the

responses measured at the four comer points, the design

is located on some slope of the response surface and is

not centered near the peak. We therefore will seek

another more interesting region in the design space to

100f; 0.50

0"00- f "''__

0"50 l

1,00- I

-1.00 -0.50

i

0.00 0.50 1.00

Flap Deflection

Figure 9. The path of steepest ascent estimated

from the initial design of figure 8.

explore. This illustrates one way that two-level

factorial designs can save resources. In this case a

relatively small number of configuration changes has

indicated that we are not in a very profitable region for

further exploration, and therefore we will not invest

further resources exploring this region for a peak in the

response surface for lift. A conventional high volume

data collection strategy might have invested substantial

resources just "getting data" throughout this region and

others, notwithstanding the fact that the peak of interest

is nowhere nearby.

The initial two-level factorial experiment revealed

that the peak in the lift response is somewhere else in

the design space. It also indicates the direction in

which to search for the peak, in that the main factor

effects can be used to compute the direction cosines for

a unit vector that lxfi_tz_/u this di_e_m__Zhe direction
2 2 2 2

cosines are A/4A2+B 2 andB/4A 2 +B 2 , where a

and B are the main effects for flap deflection and gap,

computed above as 0.0206 and -0.0294, respectively.

The direction cosines for the A and B factors are thus

0.5738 and -0.8190. They define what is called the

path of steepest ascent, which can be represented by a

line with one end at the center of the design and the

other end at any point for which the displacements from

the center parallel to the A and B effects axes within the

design space are in the ratio of 0.5738 to -0.8190. Such

a line points at an angle of -55 ° relative to the flap

deflection axis of the design space, as indicated in

figure 9.

Note that the path of steepest ascent is

approximately perpendicular to the contours of constant

lift in the region of the design, indicating that it
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representsarelativelydirectpathtowardthepeakinthe
responsesurface.Wewouldexplorealongthispath,
acquiringarelativelycoarsesampleofpointsintended
simplytobracketthepeak.Wewouldthentranslate
thedesignto ourupdatedestimateof thepeak's
location, perform another two-level factorial
experimentcenteredthere,andagaintestforcurvature
bycomparingtheliftatthecenterofthedesignwiththe
averagelift ateachofthecomersasbefore.Another
pathof steepestascentcouldbeestimatedif thenew
regionstillappearedplanar.If thecenter-pointtest
revealedcurvature,however,thetwo-levelfactorial
couldbe augmentedwith additionallevelsof flap
deflectionand gap to moreadequatelycapture
nonlinearitiesinthebehavioroftheresponsesurfacein
thisregion.Bylimitingtheseadditionalconfiguration
settingsto theregionof interest- nearwherethe
responsesurfaceisbelievedtopeak- considerabletime
andeffortcanbesavedthatwouldotherwisehavebeen
devotedto a detailedexplorationof relatively
uninterestingregionsofthedesignspace.If theseother
regionsarealsoof interestandtheresourcesexistto
explorethem,thenthiscanstillbedone.However,
simpletwo-levelfactorialdesignscanprovidethe
researcherwithobjectiveinformationfor prioritizing
theexpenditureofresources.Thisprocessofbegirming
withrelativelylimitedexperimentsandbuildingtoward
morecomplexinvestigationsisdescribedas_sequential
assembly."

Asanepiloguetothelift optimizationproblemwe
notethatsequentialassemblywasnot employed when

this experiment was actually conducted. We simply

cite it to illustrate how these techniques might have

been used to efficiently zero in on the peak in the lift

response surface. In the actual experiment, the subject

matter specialists felt that substantial interaction

between flap deflection and gap was sufficiently

unlikely to justify an assumption based on OFAT-only

information that the peak was located near the center of

the design space. The experiment therefore proceeded

immediately to relatively expensive and time-

consuming multi-level settings of flap deflection and

gap in order to characterize the response surface

throughout the design space and to quantify the peak

lift. This lead to the definition of the contours in figure

9, which provide hindsight evidence that not all the

initial assumptions were entirely justified.

For example, not only was the response surface

peak not located near the center of the design space, it

was not even within the design space at all.

Furthermore, far from being negligible, the interaction

effects in this experiment dominated even the main

effects. Subject matter expertise correctly suggested

that if flap deflection was important over the design-

space range, it would be an increase in deflection that

caused lift to improve. Likewise, if a change in gap

was to be effective, it would be through a reduction in

the gap. Therefore an alternative OFAT plan of test

called for three single-point measurements; one at

design-space coordinates (0,0) corresponding to

nominal flap deflection and gap setting, one at

coordinates (0,-1) corresponding to nominal flap

deflection and minimum gap, and one at coordinates

(1,0) corresponding to maximum deflection at nominal

gap. The strategy of this classic OFAT design was to

select among these three design-space locations the one

that maximized lift.

If interactions could be safely neglected, this

strategy would identify potential improvements

attributable to changing deflection or gap, while

minimizing the number of configuration changes.

While this design could describe the effects of changing

deflection OR gap, it could not describe the effects of

changing deflection AND gap. Because of the strong

interaction, deflection and gap were not simply additive

effects as they would have been absent the interaction.

Changing deflection alone would have produced an

improvement too small to clearly resolve within

experimental error and reducing gap alone actually
would have caused a substantial decrease in lift.

Changing them both together resulted in over 1000

counts of lift improvement.

It is a source of some frustration to advocates of

formal experiment design that such results tend to be

anecdotal. In this particular experiment, an interaction

effect proved to be important. However, had the

alternative OFAT experiment been conducted, the

conclusion would have been that there is no evidence to

suggest a set-point other than the original nominal level

at (0,0) in the design space. (Indeed, such OFAT

methodology no doubt lead to the original specification

of nominal set-point, with its lift penalty of 1000+

counts.) Without the factorial element of the

experiment imposed as part of a special MDOE

evaluation in this experiment, the effect of ignoring

interactions could well have gone undiscovered. There

are no doubt many such interaction effects in wind

tunnel testing today that will continue to remain

undiscovered as long as factorial methods are ignored

in favor of more familiar OFAT techniques.

Multiple Factors

Two-level factorials have advantages that make

them well suited for experiments involving more than

the two factors considered in the lift optimization

experiment. We now consider a more involved two-

level design that involved a total of six factors, which is
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by no meansan unusuallycomplexexampleof
configurationtesting.

A landingstabilitytestwasrecentlyconductedat
LangleyResearchCenterinwhichagenericwinged
bodyusedinspacecraftlandingstudieswastestedwith
anumberofconfigurations.Thisstudywasdesignedas
a two-levelfactorialwithsix variables,whichare
describedinTableIII. A tableofsignscouldbeeasily
constructedforthisexperimentandeachof themain
effectsandinteractionscomputedusingthealgorithm
introducedabove.In practice,suchexperimentsare
usuallyanalyzedwithsoftwaredesignedexplicitlyfor
thispurpose.Responseswererecordedfor thesix
principalbodyaxisandstabilityaxisforcesand
momentswhenthemodelwasinahighangleofattack
approachattitudewith zerosideslip,anda Mach
numberappropriateforlanding.Similaranalyseswere
conductedforallresponsesbutwewilluserollmoment
asanillustration.

Table III. Variables in landing stability study.

Factor Symbol

Left

Elevon A

Deflection

Right
Elevon B

Deflection

Body C
Flap

Canards D

Landing E
Gear

Speed F
Brake

Low Level

_20 ° 0 o

_20 ° 0 o

_10 o 0 o

Off On

Up

Not

Deployed

High Level

Down

Deployed

Blocking

A full factorial two-level six-factor design requires

2 _= 64 total configurations. Before we discuss the

details of such an experiment, note that it may be

necessary to distribute this many configuration changes

over a fairly extended period of time. If we set the

ambitious goal of averaging one configuration change

every 15 minutes, we could only make half of the 64

configuration changes in one eight-hour shift, even in

the unlikely event that there were no unanticipated

delays so that 60 minutes were available for testing out

of every hour. In a single-shift operation, this would

entail an overnight delay between the two halves of the

experiment. In a two-shift operation, it means that

different crews would acquire the data in one shift than

another. In either case, there is some potential for a
bias shift from one subset of the data to the other. In an

__ |

Block Effect

-J-
l

_ock 1 _loek 2
1

Time

Figure 10. Schematic representation of a block
effect.

overnight shutdown, for example, there can be bias

shifts in the instrumentation induced by thermal effects

and other reasons, or there could be a myriad of subtle

shutdown/restart discontinuities which, while possibly

small in an individual absolute sense, could nonetheless

combine to form a net error that is some substantial

portion of the entire error budget in a precision wind

tunnel test. We use the term "block" to describe in this

case a block of time in which greater commonality may

exist among points within the block than between

different blocks. A net difference in response across

blocks that is too large to attribute to ordinary chance

variations in the data is called a "block effect". Figure

10 is a schematic representation of a block effect.

While block effects do not necessarily occur every

time, they can have a serious impact and they can also

difficult to detect. The prudent researcher is therefore

advised to defend against them. One of the great

advantages of two-level factorial designs is that they

can provide a convenient and effective defense against

block effects, simply by assigning points blocks in a

particular way, as we will now describe.

To illustrate the impact of block effects on our

ability to properly estimate the main and interaction

effects in a two-level factorial experiment, consider the

data in Table IV. These points are a subset of the full 64

configurations that were set in the GWB landing

stability test. They represent all the points for which

elevon and body flap deflections were all zero. That is,

Table IV represents a two level factorial experiment in

only three factors: speed brake, canards, and landing

gear. We use such a subset simply to save space and

simplify the example, but the results we will present

apply no matter how many factors there are.

Imagine that for some reason it is necessary to

subdivide the eight configurations represented in Table

IV into two blocks. Perhaps there was some unforeseen

delay that caused only the first four configurations to be

set before close of business on one day, for example, so

that the last four points were acquired after an
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interveningovernightshutdown.Assumefurtherthat
someunknownsourceof errorhasbiasedall of the
estimatesofrollmomentmadeinthefirstblocksothat
theyareeach0.0005toohigh,andthatin thesecond
blocksomeequallyunrecognizederrorsourcehas
biasedtheroll momentestimatestoolowby, say,
0.0003.If theacceptableuncertaintyinrollmomentis
representedbyastandarddeviationof0.0001,say,then
theseerrorsarequitesignificant.In TableIV-awe
representthedataacquiredinwhatiscalled%tandard
order",whichmostclearlyrepresentsthelayoutofthe
design.Columnsofdatafeaturerollmomentwithand
withoutthehypotheticalbiaserrorsdescribedabove.
TableIV-bis identicalto TableIV-aexceptfor the
orderofthepoints.Thesamepointsareacquired,buta
differentsubsetisacquiredonthefirstdaythanonthe
secondday.

Table IV. Block Effects.

C_¢LXS

Day D E F BiasUnbiased Biased
Error

1 -1 -1 -1 0.00482 +0.0005 0.00532

1 -1 -1 1 0.00485 +0.0005 0.00535

1 -1 1 -1 0.00371 +0.0005 0.00421

1 -1 1 1 0.00498 +0.0005 0.00548

2 1 -1 -1 0.00413 -0.0003 0.00383

2 1 -1 1 0.00487 -0.0003 0.00457

2 1 1 -1 0.00439 -0.0003 0.00409

2 1 1 1 0.00468 -0.0003 0.00438

a)Data acquired instandard order.

C_¢LXS

Day D E F BiasUnbiased Biased
Error

1 -1 -1 -1 0.00482 +0.0005 0.00548

1 -1 1 1 0.00498 +0.0005 0.00537

1 1 -1 1 0.00487 +0.0005 0.00489

1 1 1 -1 0.00439 +0.0005 0.00475

2 -1 -1 1 0.00485 -0.0001 0.00361

2 -1 1 -1 0.00371 -0.0001 0.00403

2 1 -1 -1 0.00413 -0.0001 0.00458

2 1 1 1 0.00468 -0.0001 0.00000

b) Data orthogonallyblocked.

Let us now estimate the main effect for factor D,

using the table of signs algorithm introduced earlier.

The D effect for roll moment is the change in roll

moment caused by changing from a configuration

without canards to one with canards. To estimate this

effect, we multiply the 4-1 values in the D column times

the roll moment response values, sum algebraically, and

divide by the number of _+" signs in the D column - 4

in this case. Let us first apply the algorithm to the

unbiased data in table IV-a. We get D = (-0.00482

- 0.00485 - 0.00371 - 0.00498 + 0.00413 + 0.00487

+ 0.00439 + 0.00468)/4 = -0.00007. This value is

within the acceptable uncertainty for roll moment in

this experiment, represented as a standard deviation of

0.00010, and we would conclude therefore that canards

have no significant net effect on roll moment. This

conclusion is in harmony with expectations based on

symmetry. The same numerical result would be

obtained if we used the unbiased data of Table IV-b, of

course.

Now apply the table of signs algorithm to compute

the D effect to the biased data of Table IV-a. We get

D = (-0.00532 -0.00535 -0.00421 -0.00548 +0.00383

+0.00457 +0.00409 +0.00438)/4 = -0.00087. Not

surprisingly, the substantial bias errors that occurred on

both days have introduced a significant error in the

result. In this case, we would have estimated a roll

moment of -0.00087, which is over eight standard

deviations away from zero. An effect of eight standard

deviations is too great to reasonably attribute to simple

chance variations in the data, and we would be forced

to conclude from the data that the addition of canards

induces a significant roll moment, implausible as that

might seem from symmetry considerations and other

discipline specialist knowledge.
Let us now estimate the canard effect with the

same bias errors in play, but with the data arranged in

the order indicated in Table IV-b. Again applying the

table of signs algorithm, we get D = (-0.00532

- 0.00548 -0.00537 - 0.00489 + 0.00475 + 0.00361

+ 0.00403 + 0.00458)/4 = -0.00007. This is precisely

the same result we obtained without the bias errors.

That is, despite the identical bias errors that produced a

roll moment error a factor of eight times the acceptable

standard deviation in unexplained variation, and despite

the fact that precisely the same combinations of

configuration variables were acquired, the re-ordering

of the data in Table IV-b produced exactly the same

estimate of roll moment we would have achieved had

there been no bias errors at all! This is a most

remarkable result. It implies, among other things, that

not all test matrices are created equal, and that some

set-point orderings are apparently preferable to others.

In particular, the set-point ordering that is the fastest or

the most convenient is not guaranteed to produce the

highest quality result. On the contrary, there is

generally a tradeoff between speed and convenience on

the one hand, and quality on the other. For example,

the set-point ordering of Table IV-b requires a

somewhat greater number of individual configuration

changes than the set-point ordering of Table IV-a. The
reward for this extra effort is freedom from the kinds of

bias errors featured in this example.
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Thisexampleillustratesa qualityassurancetactic
knownasorthogonalblocking,whichis especially
convenientto implementwith two-levelfactorial
designs.If weimaginethatthecolumnsinthedesign
matrixrepresentvectors,thenthevectorsofatwo-level
factorialareallmutuallyorthogonal.Thatis,thesum
ofterm-by-termcross-productsofanypairofcolumns
iszero.Thisisproportionaltothecosineoftheangle
betweenthevectorswhichimpliesthatallthevectors
areatrightangles,or orthogonal to each other. If a

block effect confounds one of the vectors, it will have

no effect on any of the others for that reason. The

technique used in this example, then, was to cross-

multiply the elements of the D, E, and F factors in the

table of signs to produce a column of signs for the DEF

three-way interaction. Data points were assigned to the

two blocks according to whether the signs in this

column were positive or negative. Points with positive

signs in the DEF column were assigned to one block

and those with negative signs in the DEF column were

assigned to the other. Bias errors would confound the

estimate of the DEF three-way interaction, but because

of the orthogonality property all the other columns

would be unaffected by the block effect. Thus, by

sacrificing a higher-order interaction that was not likely

to be very large compared to the main effects or lower-

order interactions, all of those potentially more

significant effects were protected from block effects.

Further details of the quality enhancements that can be

achieved by judicious set-point ordering is beyond the

scope of this paper, but is discussed in standard

references on experiment design. 5-7 Specific

applications to aerospace testing are also described in

the literature. 1,2 The chief point for the purposes of this

paper is that factorial designs such as this one can be

structured easily to eliminate what otherwise could be

significant components of unexplained variance in the

data. This, in turn, relieves the pressure to acquire data

in higher volume (i.e., to specify more configuration

changes) as a prerequisite for seeking higher precision

in a configuration test.

The Sparsitv of Effects Principle

Let us return to the full six-factor two-level design,

which requires 26 = 64 total configuration changes. We

use the symbols in Table III to represent the main

effects, and we use combinations of those symbols to

represent interactions. For example, "A" and "B"

represent the main effects for left and right elevon,

respectively, "AB" represents the two-way interaction

between left and right elevon, and so forth.

There are N!/[n! (N-n)! ] possible n-way interactions

involving N factors. In this experiment, then, there are

thus 6!/(1!5!) = 6 "one-way interactions" (i.e., main

effects, and by symmetry there are also six possible

five-way interactions), there are 6!/(2! 4!) = 15 two-way

interactions and again by symmetry there are 15

candidate four-way interactions, there are 6!/3 !3! = 20

possible three-way interactions, and there is 6!/6!0! = 1

six-way interaction. There are thus a total of 6 + 15 +

20 + 15 + 6 + 1 = 63 total possible effects. The 64 data

points provide a single degree of freedom for each of

the 63 candidate effects, plus one degree of freedom

that is consumed in estimating the mean of the data.

Notwithstanding the substantial number of possible

candidate effects, in practical situations there are often

relatively few effects of significant magnitude.

Furthermore, there is a natural hierarchy in which main

effects and relatively low-order interactions tend to be

more significant than higher-order interactions. We call

this general tendency the "sparsity of effects" principle,

which we will exploit presently. We can illustrate the

sparsity of effects principle for the roll moment analysis

of the current six-factor experiment that we are

considering. The left and right elevon main effects

completely dominate all the remaining 63 possible

effects, as is expected from the fact that it is elevon

deflection that provides the primary roll command

authority for this vehicle. That is, the vehicle was

designed explicitly to have significant elevon effects on

roll moment. Figure 11 is a bar chart that displays the

magnitude of the remaining 61 effects, with elevon

main effects deleted from this figure simply to enable

greater graphical resolution of the remaining effects.

(The main left and right elevon roll moment effects, A

and B, are +0.04871 and -0.04495, respectively, which

are approximately 50 times larger than the largest

interaction effect displayed in figure 11 .)
The variance in estimates of the main effects and

interactions can be computed using a formula that is

easy to derive from a general formula for error

propagation provided in standard texts on uncertainty

analysis 8'9 and it is also available in standard texts that

treat two-level factorial experiments. 6'7 The formula is:

2 4cr2 2or
= -- _ o-4?ect (1)

O-effect N = "-_

where N is the number of points (64 in this case) and

with no subscript is the standard deviation in the

response variable that we are studying. The standard

deviation in roll moment was 0.00041 in this

experiment so by equation 1 the standard deviation in

roll moment effects was 2 x 0.00041/8 = 0.00010. A 57

degree of freedom estimate of the roll moment standard

deviation was based on the data, from which a 95%

confidence interval half-width was computed as
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Figure 11. Main and interaction roll moment effects for GWB full factorial experiment. Main elevon effects, A

and B, excluded to enhance resolution.

t(0.05/2,57)x 0.00010 = 2.0025 x 0.00010 = 0.00021. Note
that since each main effect and interaction is a linear

combination of the same number of response

measurements, each with the same uncertainty, the

variance for all effects is the same, regardless of

whether they are main effects, low-order interactions,

or high-order interactions. All effects therefore share

the same 95% confidence interval.

The upper and lower limits of such an interval

centered on zero are marked in figure 11. Note that of

the 61 main effects and interactions represented on this

figure, 57 are within the 95% confidence interval

centered on zero. That is, for each of these 57 effects,

we have no basis for rejecting a null hypothesis that

their true value is zero and that their specific non-zero

values are attributable simply to chance variations in

the roll moment data. It is only the main elevon effects,

A and B, and their two-way interactions with factors E

and F that are significant. From Table III we see that

factors E and F are landing gear and speed brake,

respectively.

A certain degree of clarity has emerged from a

potentially large number of complex candidate effects

for roll moment. Apparently, out of 63 possible effects

that could be in play, the only significant ones are the

main elevon effects and the two-way interaction of each

elevon with the speed brake and the landing gear. That

is a total of only six effects that are not in the noise, or

less than 10% of the 63 total possible effects. We can

use this information in a number of ways. In the first

place, knowledge of the important main effects and

interactions, as well as knowledge of which effects play

no significant role, enhance our insights into the basic

underlying mechanics of the process. While the role of

elevons in inducing roll moment is not unexpected, the

influence of the landing gear and speed brake was not

necessarily anticipated. The fact that these were

important while the body flap and canards made no

difference provides subject matter specialists with

interesting insights into the general stability and control

problem.

It is especially useful to know which factors are

important and which are not if we decide to employ a

steepest ascent strategy to seek independent variable

combinations that maximize or minimize roll moment.

In this case we can base the direction cosine

computations and local curvature estimates on 24 = 16

comer-points rather than 26 = 64, a savings of 48

configuration settings at each stage of this process. We

not only know that we can drop 75% of the

configuration settings, we know which 75% to drop.

Fractionatin_ the six-factor design

Recall that we used the column of signs for the

highest-order interaction as a basis for blocking the
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Figure 12. Using the 6-way interaction to blocking

a six-factor 2-level design.

experiment in such a way that block effects confounded

the high-order interaction (which is not usually

expected to be significant by the sparsity of effects

principle), and in this way defended all main effects and

all other interactions from block effects. If we were to

block this six-factor experiment into two blocks in this

way, we would sacrifice the ABCDEF six-way

interaction in order to ensure that all other effects are

clear of block effects. Figure 12 illustrates how we

would use the ABCDEF interaction to assign points to

blocks in this way, where the signs alone are used as

implied 4-1 values to conserve space and in keeping

with another common convention for representing high

and low levels in a two-level factorial design. Since

only six degrees of freedom are consumed in estimating

the six significant roll moment effects and one more is

needed for the mean, it is reasonable to ask why the 32

data points in the first block would not be ample for our

purposes. Why press on to acquire 32 additional data

points beyond the 32 we already have acquired in the

first block, if the sparsity of effects principle suggests

that with 32 degrees of freedom already acquired we

probably have more than enough data to quantify the

number of effects that are likely to be significant? One

reason might be that additional degrees of freedom are

needed via equation 1 to satisfy inference error risk

tolerance specifications. Another reason might be that

we simply fear there are more significant effects in this

specific situation than the sparsity of effects principle

would suggest for the general case. However, in many

commonly occurring circumstances we can do with a

significantly smaller volume of data (which means

significantly fewer configuration settings in a

configuration study) than is necessary to estimate every

single main effect and every single higher-order

interaction that is theoretically possible.

Note also that the number of configuration settings

required to estimate all theoretically possible effects

doubles with the addition of each new configuration

variable. The Blended Wing Body is a proposed

transport concept with 16 trailing edge control surfaces,

for example. With power on/off as a 17 th variable, over

131 thousand configuration changes would be needed

for a full-factorial experiment in these 17 variables,

even if each was set at only two levels. However, it is

highly unlikely that any of the 17!/(8! 9!)=24,310 eight-

way interactions will be large compared to the main

effects and lower-order interactions, for example, and

likewise for the 23,310 nine-way interactions, the

19,448 ten-way interactions, the 12,376 ll-way

interactions, and so on. Experience suggests that

significant interactions much beyond about 3ra-order are

unlikely, and that not even all effects of order three or

less will be significant. So in large problems such as

this a full factorial design seems especially wasteful.

This leads to the concept of "fractionating" the design

to more closely match the number of configurations

examined with the number of effects that are likely to

be real. We will use the six-variable GWB landing

stability test to illustrate an efficient approach to

fractionating the full factorial design, and to illustrate

the penalty associated with the substantial cost savings

that accrue from eliminating configuration settings.

Imagine that we have blocked this design as

indicated in figure 12, by using the six-way ABCDEF

interaction column to assign configurations to blocks.

Assume further that we have executed the first block

only. Such a design is called a half-fraction of the full

factorial design, for obvious reasons. Figure 13

represents the table of signs for this half-fraction

design. This table of signs has almost exactly the same

structure as the full factorial design. The only

difference is that the ABCDEF six-way interaction

column contains all values of the same sign (the sign

used to define this block as in figure 12), and there are

only 32 rows instead of 64, reflecting the factor of two

cost savings we are attempting to achieve. We could

proceed to use the table of signs algorithm with this

table to estimate all the effects exactly as before (except

the six-way interaction effect that we have sacrificed to

achieve this cost savings), and we would have set only

32 configurations, a great savings of time and money.

The wary reader may sense the onset of a free

lunch proposition about which he is entitled to be

skeptical. Is it really reasonable to assume that 32

degrees of freedom are sufficient to unambiguously

estimate the mean plus any of up to 63 additional

effects? No, of course it is not. We "pay for our lunch"

through a phenomenon known as "aliasing", which can

be illustrated by comparing the column of signs for the

15

American Institute of Aeronautics and Astronautics



F factormaineffectin figure13withthecolumnof
signsfortheABCDEfive-wayinteraction,forexample.
Bothcolumnsof signsareidentical.Thismeansthat
whenweusethecolumnofsignsalgorithmtoestimate
themaineffectfor factorF,weactuallycomputethe
sumofthiseffectplusthefive-wayinteractioneffect.
If weadopta commonconventionbyusingsquare
bracketsto representanaliasedestimateof aneffect
andnobracketstorepresentthetrueeffect,thenwecan
write[F]=F+ABCDEtoindicatethealiasing.Theterm
_alias"derivesfromthefactthatthesamecolumnof
signsnowcariestwolabelsornames- FandABCDE.

NotethattheFeffectisnottheonlyaliasedmain
effect.Thecolumnof signsfortheE maineffectis
identicaltothecolumnfortheABCDFinteractionin
figure13sowealsohave[E]=E+ABCDF,andlikewise
[D]=D+ABCEF.It turnsoutthatallmaineffectsand
everyinteractioneffectisaliasedinthisway.(It isjust
aspropertosaythattheABCDEfive-wayinteractionis
aliasedbytheFmaineffectastosaythemaineffectis
aliasedbytheinteraction,sowecanalsoexpressthisas
[ABCDE]=ABCDE+F.)Thatis,everyestimatedeffect
is actuallythesumof thateffectplusoneadditional
effect.A littlereflectionrevealswhythismustbe.
Thereareatotalof 63possibleeffectsplusthemean,
whichmustnowbe estimatewith 32 degreesof
freedom.Eachdegreeof freedommustthereforedo
doubleduty,representingtwoeffectsinsteadofone.

At firstglance,aliasingmayseemto representa
hopelessconfoundingof effects.If everyestimated
effectisreallythesumoftwodifferenteffects,howcan
wedeterminehowmuchiscontributedbyoneeffect

andhowmuchbytheother?Withoutperformingthe
entirefull factorialexperiment,we cannottell
definitivelyhowmucheachof thetwoaliasedeffects
contributesto the estimatecomputedfrom their
commoncolumnofsigns.However,wecaninvokethe
sparsityof effectsprincipleagain,to surmisethatthe
higher-orderinteractionsarelikelyto beeithernon-
existentorrelativelysmallcomparedtothemaineffects
andlower-orderinteractions.Soincasessuchaswe
haveillustratedhere,wheremaineffectsarealiasedby
five-wayinteractioneffects,thereisreasonto believe
thatthealiasedestimateofthemaineffectmaynotbe
muchdifferentfromthetruemaineffect.Thatis,we
havesomereasontobelievethattheenormoussavings
wehaveachievedin timeandmoneymayhavebeen
securedwitharelativelysmallpricein thequalityof
ourresult.If wecanarrangeit sothattheeffectsthat
arelikelytobeimportantarealiasedbyeffectsthatare
likelyto be insignificant,thenwemaybeableto
enhanceproductivitysubstantially.

Thefull-factorialroll-momentdatasetfor the
GWBexperimentwasreanalyzed,usingonlythehalf-
fractioncomponentof figure13. Themainleftand
rightelevoneffectsforroll moment,A andB,were
aliasedin thiscasebytheBCDEFandACDEFfive-
wayinteractioneffects,respectively.Nonetheless,at
+0.04858and-0.04501theywerestillontheorderof
50timeslargerthanthenextlargesteffectin thehalf-
fractiondesign,justasin thefull factorialcase,and
theirsignificanceasimportantroll momentdriversis
thereforestillunambiguousdespitethealiasing.Figure
14displaysall oftheother(aliased)effects,withthe

RU rVlainEffect a ctorin_e_ac_ion Fi_e_fac_orlnteraction Inte_action
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Figure 13. Table of signs for one block representing half of a six-factor 2-level design.
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(aliased)A andB effectsremovedfromtheplotas
beforetoenhancegraphicalresolution.

Weknowwhatthebenefitisofconductingthesix-
factortwo-levelconfigurationexperimentasa half
fraction:Wesave32potentiallyarduousandtime-
consumingconfigurationchanges.Evenunderthe
ambitiousassumptionthatwecouldmakesuchchanges
every15minutes,thiswouldhavereducedcycletime
by a full eight-hourday. A full costaccounting
evaluationoftheimpactofaday'scycletimereduction
transcendsthescopeofthispaperandtheexpertiseof
theauthors.Wenote,however,thatit isnotuncommon
for a majoraircraftmanufacturerto haveseveral
billionsofdollarscommittedtobringinganewaircraft
designtomarket.Athistoricalmarketrates,thecostof
capital(interest)onthismuchmoneycanapproachthe
million-dollars-per-daylevel. Thereis also the
weightedexpectationvaluecostassociatedwiththerisk
thata competitorwill bringsomesimilardesignto
marketadayearlier.Clearly,savingadayof cycle
timenowandagainonamajorprogramcantranslate
intosubstantialbenefitsonafullcostaccountingbasis.
Thisislikelytobetrueevenonsmallerprojects.

Thecycle-timesavingsaffordedbyfractionating
two-levelfactorialdesignsdonotcomewithoutcosts,
astheabovediscussionof aliasingindicates.Wecan
comparefigure14tofigure13toassesstheimpactof
suchaliasingforthesix-factorGWBlandingstability
testwehavebeenexamining.Thiscomparisonisquite
revealing.Again,asin figure13,horizontaldashed

linesindicatetheupperandlowerlimitsof a 95%
confidenceintervalcenteredon0,whichis computed
undertheassumptionthatchancevariationsinthedata
aretheonlysourcesof error. Thisrepresentsthe
minimumuncertaintythatcouldbeachievedwitha32-
pointdatasamplegiventhevariancein individualroll
momentmeasurements,perhalf-widthcomputations
basedonthestandarderrorformulainequation1. The
95%confidenceintervalhalf-widthforthefractionated
designis0.00032,versus0.00021forthefullfactorial
design,reflectingthesmallersamplethroughequation1
plustheslightlyenlargedt-statisticassociatedwiththe
differencebetween57degreesof freedomtoestimate
theunexplainedvarianceforthefull factorialcaseand
only25 degreesof freedomthatwouldhavebeen
availabletoassesstheunexplainedvarianceinthehalf-
fraction.

Theessenceoffigure14,whichrepresentsthehalf-
fractioncase,is thatit virtuallyindistinguishablein its
importantdetailsfromthefull-factorialcaseoffigure
13.Themagnitudesoffourinteractioneffectsareagain
substantiallylargerthanall othereffects,whichare
seentobestatisticallyindistinguishablefromzerojust
asin thefull-factorialcase.Thesame(albeitaliased)
interactioneffectsareclearlydistinguishablefromthe
noiseforthehalf-fractioncaseasforthefullfactorial
case.Thatis,thehalf-fractioninferencesareidentical
to thosedrawnfrom the full factorialcase,
notwithstandingthefactthattheyarebasedonhalfthe
data.
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Figure 14. Main and interaction roll moment effects for GWB half-fraction experiment. Main elevon effects, A

and B, excluded to enhance resolution.

17

American Institute of Aeronautics and Astronautics



0.0004

0.0002
O

I11

.__ 0.0000

-0.0002

-0.0004

A [] AE AF

Roll Moment Effects

BE BF

Figure 15. Half-fraction alias errors for roll moment.

We have already noted that the main effects are

aliased with five-way interactions in the six-factor half-

fraction design. All the two-way interactions are

aliased with four-way interactions, as it happens.

Specifically, for the four significant two-way

interactions we have that [AE] = AE + BCDF,

[AF] = AF + BCDE, [BE] = BE + ACDF, and

[BF] = BF + ACDE. The sparsity of effects principle

suggests that the four-way interactions will be small

and that the two-way interaction estimates will not be

substantially different with or without aliasing by four-

way interactions. It is always a good idea to examine

the specific aliasing effects to see if there is any special

reason to believe that they constitute an exception to the

general sparsity of effects principle, but if there are no

such special cases, we have the option of accepting the

extra uncertainty associated with the aliased estimates

of the significant effects, as the price we pay for a

substantial savings in cycle time.

In this pedagogical example, we have the luxury of

examining both the aliased and unaliased estimates of

the significant main effects and two-way interactions.

Figure 15 shows the difference for each of the two

significant main effects and four significant two-way

interactions. These differences represent an additional

component of uncertainty introduced by the aliasing

with higher-order interactions. (In this case they

represent the magnitude of the high-order aliasing

effects themselves.) The 95% confidence interval

associated with errors in the 32-point effects estimates

induced by ordinary chance variations are indicated in

the figure. It is clear that the errors due to aliasing are

no greater than ordinary random experimental error in

this case, and that the cost?oenefit tradeoff associated

with fractionating the design would have been a

favorable one. (In the actual experiment, the full

factorial case was executed as part of an in-house

demonstration/evaluation of the benefits of fractional

factorial designs, but a fractional factorial would almost

certainly have been executed in the case of a six-factor

experiment, given the likelihood that only low order

effects would be significant and that they would be

aliased with higher-order effects.)

Fortunately, it is easy to forecast the aliasing

patterns in advance, through a simple mechanism

known as the _defining relation" that will now be

described. We begin by defining a column containing

all plus signs as an identity column, denoted by _I".

For example, the ABCDEF column in figure 13 is an

identity column. We can therefore write in this case

that I=ABCDEF. This equality is the _defining

relation" for this half-fraction design.

We introduce a special algebra for the columns of

signs in which multiplication of two columns is meant
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to imply the term by term multiplicationof
correspondingelementsin eachvector,inexactlythe
samewaythatcolumnsfortheinteractiontermswere
formedfromthemaineffectscolumnsin thetableof
signs.Thecolumnsalgebrafeaturesonlytworules.
Thefirstruleis thatsincetheidentitycolumnis a
columnof plussignsonly,multiplying_I" timesany
othercolumnresultsinthatsamecolumn.Thesecond
rule is that multiplyinganycolumntimesitself
producestheidentitycolumn.Thisisbecause+1time
+1is+1,and-1times-1isalso+1.Armedwiththese
two rulesandthe definingrelation,we cannow
determinethealiasingpatternsforanymaineffector
interaction.Forexample,to determinethealiasing
patternfor the_A"maineffect,wesimplymultiply
bothsidesofthedefiningrelationbyA andinvokeour
tworulesinvolvingtheidentitycolumn:

I =ABCDEF
A xI =A xABCDEF=(AxA)x BCDEF
A =IxBCDEF
A =BCDEF

ThistellsusthatA andBCDEFarealiasesofeach
other.

Thesameprocedurecanbesedfor anyother
effect.Forexample,B x I = B = B x ABCDEF
=A x (BxB)xCDEF=AICDEF=ACDEF.SoB and
ACDEFarealiases.Thegeneralalgorithmwhen
multiplyinga wordin thedefiningrelationby some
otherwordis todropall letterscommontobothwords
andretainonlythosethatareuniquetoonewordorthe
other,thentodropthe_I"factors.

WecanseefromthedefiningrelationthattheAE
interactionwesawwassignificantis aliasedby the
BCDFinteraction,theAFinteractionisaliasedbythe
BCDEinteractionandso forth. Therewereno
significantthree-wayinteractionsforrollmomentbut
wecouldeasilyhavedeterminedtheiraliasingpatterns
hadanybeensignificant.MultiplyingI=ABCDEF
throughbyABC,for example,yieldsABC= DEF.
Thesetwothree-wayinteractionsarethereforealiases
of eachotherandsharethesamepatternof signsin
theirrespectiveeffectscolumnsin thehalf-fraction
design.

A patternhasemergedinwhichweseethatmain
effectsarealiasedwithfive-wayinteractions,two-way
interactionsarealiasedwithfour-wayinteractions,and
three-wayinteractionsarealiasedwithotherthree-way
interactions.Thatis,n-way interactions are aliased

with m-way interactions, where in this case n+m 6.
We use the term _resolution" to describe this situation

and say in this specific case that a half-fraction of a six-

factor two-level factorial is of _resolution VI", where it

is a convention to use Roman numerals to indicate the

resolution. Note that the resolution of the design equals

the number of characters in the longest word of the

defining relation.

If we can neglect 3rd-order interaction terms and

higher, we can be confident that the aliasing that occurs

in a fractional factorial design of resolution V or higher

will not be a serious problem. This is often a safe bet in

practical circumstances, but since the aliasing patterns

are known in advance, we can also assign the physical

variables to factor letters in the design in such a way as

to exploit our subject matter expertise to cluster

unrelated effects into the interaction terms that alias the

effects that most interest us. A certain amount of

judgment is required to do this effectively, not to say

some plain good luck. Nonetheless, it is possible to

%tack the deck" in the researcher's favor by the

judicious exploitation of aliasing patterns in advance.

Quarter-fraction designs

Having achieved such a good cost/benefit trade

through a half fraction of the original full factorial

design, it is natural to ask if we could divide the half-

fraction in half again, achieving an even greater

reduction in the number of configurations we would

need to set. After all, even a half fraction requires 32

configuration settings, which may still seem excessive

since in our example we know that only six effects are

important. In a real application we would not know in

advance exactly how many significant effects to expect,

of course, but the sparsity of effects principle gives us

the same general answer in all cases: _Not very many."

On that basis we may be tempted to explore further

fractionation.

Recall that we began the development of the half-

fraction design by using the column of signs for the

highest-order interaction term in the full factorial to

break the design into two half fractions, according to

which points had plus signs in that column and which

had minus signs. We call the ABCDEF interaction

term used for this purpose a _design generator".

A single design generator was used to create the

half fraction design. Two design generators can be

used to create a quarter fraction. We select two

columns of signs from the full factorial design and

divide the points (the rows in the table of signs) into

four 16-point fractions according to whether both signs

in the two defining generators are positive for a given

point, both are negative, the first is negative and the

second is positive, or the first is positive and the second

is negative. We can use whichever of the four quarter

fractions is most convenient. In this example we will
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considerwhatiscalledthe_principalfraction",which
is formedfromthepointswithplussignsinthesame
locationofthetwodesigngenerators.Forthiscasewe
usedasdesigngeneratorsthe ABCEandBCDF
interactiontermsfromthefull tableof signs.The
criterionforselectingdesigngeneratorsisthatwewish
to developthehighest-resolutiondesignpossibleto
minimizealiasingeffects.In reality,thisis a solved
problemfordesignsfeaturingawiderangeofnumbers
of factorsand for variouslevelsof resolution.
Computersoftwareexistsfor designingfractional
factorialsinwhichthenumberof factorsanddesired
numberofpointsarespecified(sixand16,respectively,
for the quarter-fractiondesignwe are currently
considering)andthedesigngeneratorsthatproducethe
highestresolutiondesignarethenselectedby the
computerviaatablelookupschemeinvolvingtabulated
resultsofyearsoftrialanderrordesignattempts.The
readercanalsoconsulttheliteratureforthesetablesof
optimumdesigngenerators.<7'1°'11

Becauseweusetheprincipalfraction,bothof the
designgeneratorsforourquarterfractiondesignwillbe
identitycolumnsandwewill have I = ABCE = BCDF.

There is an interaction effect associated with any pair of

effects that can be determined by column multiplication

of the kind we have been using all along. In this case,

the interaction of the ABCE and BCDF effects is

ABCE x BCDF = A (BB) (CC) DEF = AIIDEF

= ADEF. Since both ABCE and BCDF are identity

columns their product is also, and we have the

following defining relation for this quarter fraction

design:

I = ABCE = BCDF = ADEF (2)

We see immediately that this will be a resolution

IV design, because the longest word in the defining

relation has only four characters. That means that if we

can neglect interactions of order three and higher, we

can still expect to have reasonably clear estimates of the

main effects of all six factors, since main effects are

only aliased with interactions of order three or higher in

a resolution IV design. The two-way interactions will

be a bit more problematic, however, because two-way

interactions are aliased with other two-way interactions

in a resolution IV design, and one would seldom be

justified in assuming no significant two-way

interactions. Still, it is possible to gain important

insights in a relatively short period of time with highly

fractionated (i.e., relatively low resolution) designs

such as this, as we can demonstrate by further

fractionating our roll moment experiment design.

We are in the fortunate position of having already

analyzed a full factorial version of this experiment, so

we know which factors are significant without any

ambiguities introduced by aliasing. They are the A and

B main effects for left and right elevon deflection, and

the two-way interactions of each of these main effects

with variables E and F, the landing gear and speed

brake, respectively. We can use the defining relation

for our quarter-fraction design to determine the aliasing

pattern for these significant effects. They are as
follows:

[A] = A + BCE + ABCDF + DEF

[B] = B + ACE + CDF + ABDEF

[AE] = AE + BC + ABCDEF + DF

[BE] = BE + AC + CDEF + ABDF

[AF] = AF + BCEF + ABCD + DE

[BF] = BF + ACEF + CD + ABDE

Note that each estimated effect is actually the sum

of four effects, consistent with the fact that we have 16

degrees of freedom available to represent a total of 64

potential effects (63 plus the mean). Each available

degree of freedom must therefore carry four effects.

The main left and right elevon effects are as

unambiguously part of the solution in this quarter-

fraction design as they were in the full factorial and half

fraction. Again, the three-way and five-way

interactions are not likely to be large compared to the

main roll moment effects, especially when the main
effects are elevon deflections.

Figure 16 presents the quarter fraction effects

except for A and B, again deleted to increase graphical

resolution for the remaining effects. The aliased

versions of the four effects we know to be significant

again protrude above the noise, although less so

because the 95% confidence interval is now wider,

reflecting the additional factor of two reduction in

sample size and the aliasing effects. Interactions higher

than third order have been deleted from the labels of the

effects in figure 16.
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Wealreadyknowwhicheffectsarerealandwhich
arenoisefromthefullfactorialresults,butwemustput
ourselvesin thepositionof anexperimenterwhohas
conductedonlythequarter-fractionresult.Whatcanbe
saidabouttheseresultswithoutthebenefitoftheextra
knowledgewepossessin thisspecialcase? One
plausiblelineof reasoningmightdevelopalonglines
similarto the following: We startwith thetwo
significanteffectsthefurthesttotherightinfigure16.
Theseare:

AF+DE
BF+CD

WealreadyknowthatthemainA andB effects
dominatetherollmoment.Weknowthisbecauseof
therelativelyunencumberedestimatethataresolution
IVdesignprovidesformaineffects,whichindicatethat
theyareabout50timeslargerthanthenextlargest
significanteffect,andalsofromourownsubject-matter
expertise,whichinformsusthattheelevonsprovidethe
mainrollcontrolauthorityforthevehicle.SincetheA
andB effectsaresoimportantforroll moment,it is
morelikelythata truetwo-wayinteractionwould
includeAorBthananyotherfactor.Thus,AFismore
likelythanDEtobearealeffect,andlikewiseBFis
morelikelytoberealthanCD.Takentogether,if we
tentativelyacceptthateitherAForBFisreal,thenit is
morelikelybysimplesymmetrythattheotherisalso
real.Thatis,if theleft elevon interacts with the speed

brake (factor F), then it seems likely that the right

elevon would also interact with it. If instead we assume

that DE dominates AF and CD dominates BF, we are

left with a model in which the canards (factor D)

interact with the body flap (factor C) and the landing

gear (factor E), and that these interactions are greater

for roll moment than the AF and BF interactions that

involve the main roll moment control surfaces. While

this is not impossible, it seems rather unlikely. It is

reasonable to assume that the analyst would correctly

infer that the AF and BF interactions were significant,

despite the relatively substantial aliasing in the quarter

fraction design.

The two significant effects on the left side of figure

16 are somewhat more ambiguous. They are as
follows:

BE + AC

AE +BC +DF

We could perhaps eliminate the DF interaction

from contention on the grounds that it does not involve

either of the elevons and all four of the remaining

candidate interactions do. However, there is no rational

basis for favoring a model in which both elevons

interact with the landing gear (factor E) over a model in

which both elevons interact with the body flap (factor

C). So the real portions of the above two aliased pairs

of effects could just as easily be AE and BE, or AC and

BC.

Here we see that aliasing has introduced an

ambiguity that is irresolvable without some additional

information. We are presented with two outcomes that

are equally plausible - that the dominant elevon effects

0.0015
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0.0005

_- 0.0000
O

N
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-0.0010

-0.0015

Effect

Figure 16. Main and interaction roll moment effects for GWB quarter-fraction experiment.
effects. A and B. excluded to enhance resolution.

21

American Institute of Aeronautics and Astronautics

Main elevon



W

.m

0.0010

0.0008

0.0006

0.0004

0.0002

0.0000

-0.0002

.0.0004

.0.0006

.0.0008

.0.0010

Effect

Figure 17. Main and interaction roll moment effects for

elevon effects. A and B. excluded to enhance resolution.

can be influenced either by the influence of the landing

gear deployment or by the deflection of the body flap, a

trailing-edge control surface mounted on the axial

centerline of the vehicle aft of the a propulsion pod and

halfway between the left and right elevons. This

suggests that eliminating 48 of the 64 candidate

configurations may have been too ambitious in this

case, and that a resolution VI half fraction - which

nonetheless eliminates half of the configurations

without having to drop any of the variables from the

design - might be the best selection. However,

assuming that we have just executed this quarter-

fraction design in six variables, we would like to be

able to augment it methodically so that we can proceed

to a half fraction without having to throw away any of

the results obtained so far. Fractional factorial designs

permit us to do exactly tha, whereas if a small scale

OFAT design obtains insufficient information, the

researcher is quite frequently in the position of starting

substantively from scratch.

There are numerous augmentation strategies

available for fractional factorial designs but many of

them involve techniques for adding fractions

judiciously. For example, for a 16-point quarter

fraction of a six-variable two-level factorial, these

strategies would typically involve adding an addition

16-point fraction. One way of doing this is called a

GWB experiment afierfactor-C augmentation. Main

"foldover" augmentation that in this case would add 16

more points to the design with all the plus signs and

minus signs reversed in the table of signs. This strategy

has the effect of clearing main effects of certain low-

order interaction effects, providing a higher resolution

estimate of all the main effects. For example, the

foldover of a resolution III design, in which all main

effects are confounded by two-way interactions that

cannot be neglected out of hand, results in a resolution

IV design with all main effects clear of interactions less

than 3ra-order.

Another strategy is to create a second fraction

identical to the first, except that all signs in the column

for one main effect are reversed. This clears the main

effect of that variable and all of its two -way interactions

of effects less than 3rd-order. In our case, neglecting

3ra-order interactions or higher, we have two aliased

terms for which either alias is plausible. We have an

effect that is equal to BE + AC and another effect that

is equal to AE + BC (+ a third candidate interaction

effect for roll moment that does not involve the elevons,

which we are temporarily discounting). We cannot say

whether the elevon effects interact with the E factor

(landing gear) or the C factor (body flap). We decide to

relieve this ambiguity by reversing the signs in the

column for the C main effect in an otherwise identical

table of signs for the quarter fraction. This will free the
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maineffectofthebodyflapfromlow-orderinteractions
andlikewiseitstwo-wayinteractionwithallothermain
effectsandtwo-wayinteractions.

Table V. Augmentation of quarter-fraction design

Quarter-Fraction Significant Terms
A + BCE + DEF + ABCDF 0.04845

B + ACE + ABDEF + CDF -0.04497

BE + AC + CDEF + ABDF 0.00075

AE + BC + DF + ABCDEF -0.00115

AF + BCEF + DE + ABCD 0.00088

BF +ACEF +ABDE +CD -0.00112

Significant Terms of Augmented Design
A + DEF 0.04866

B + ABDEF -0.04501

BE + ABDF 0.00071

AE + DF -0.00099

AF + DE 0.00099

BF + ABDE -0.00094

C

Body-Flap Terms After Augmentation
-.000020

AC 0.00003

BC -0.00017

CD -0.00018

CE 0.00010

CF 1.85E-04

Table V compares the significant main effects from

the quarter fraction design with the corresponding

effects of from the augmentation. Note that the

ambiguities involving the C factor are resolved. In

particular, all of the interaction terms involving the C

factor are now eliminated from the aliasing pattern of

the augmented design. Furthermore, unaliased

estimates of C and its two-way interactions with each of
the other five factors are now clear of interaction terms

that were present in the quarter-fraction design. This

permits us to see how small they are. Recall that no

roll-moment effect from a 32-point sample with the

experimental error of this investigation can be resolved

at 95% confidence unless its magnitude is at least

0.00032. The AC and BC effects that were causing so

much confusion in the quarter-fraction design are now

seen to be +0.00003 and -0.00017, respectively - well

below the noise floor. So we know now that these

terms were not responsible for the effects being

significant, and that it is now much more clear that it is

the landing gear (factor E) that is interacting with the

elevons, not the body flap. Figure 17 displays the

effects estimated after the factor-C augmentation to the

quarter-fraction design. It is similar to figures 11 and

14, showing effects for the full factorial and original

half-fraction, respectively.

The effects we have been estimating represent the

change in response (e.g., roll moment) associated with a

change in coded variable from -1 to +1. The effects

therefore represent twice the change in response due to

a unit change in the factor. The change in response due

to a unit change in a factor represents the coefficient of

a response model. We can therefore use the significant

factors we have discovered to build a response model

that can be used to predict responses at other

combinations of the independent variables besides the

ones we set in the experiment. We estimate the

constant or y-intercept for this model by applying our

table of signs algorithm in the usual way, but using the

identity column (all plus signs) that forms the left-most

column of the design matrix. The algorithm requires us

to apply the signs to the response column, compute the

algebraic sum, and divide by the number of plus signs,

which simply results in the sample mean for the entire

data set. This, then, is the y-intercept.

Table VI. Coefficients of roll moment response

model from full factorial design

half the effects estimates).

Coefficient 95% Cl 95% Cl

Factor Estimate Low High

Intercept 0.00267 0.00257 0.00277

A 0.02435 0.02425 0.02446

B -0.02248 -0.02258 -0.02237

AE -0.00039 -0.00050 -0.00029

AF 0.00043 0.00033 0.00053

BE 0.00043 0.00033 0.00054

BF -0.00044 -0.00054 -0.00034

Table VI displays the roll moment response model

coefficients for the full factorial design. These are half

the effects values we estimated by applying the table of

signs algorithm, and the intercept is the average of all

64 roll moment estimates. We can use these

coefficients to construct a roll moment model as

follows:

CMXS= 0.00267 +0.02345A

-0.02248B -0.00039AE

+ 0.00043AF + 0.00043BE

-0.00044BF

(3)

where from Table III we know that A and B are left and

right elevon deflection angles, E is landing gear and F

is speed brake. The landing gear and speed brake

factors are categorical values, assuming only the values
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of +1. The elevon variables are numeric, and can

assume a range of values between + 1.

A close examination of equation 3 and the 95%
confidence interval limits in Table VI reveals

something remarkable. The coefficients of all four 2-

way interact terms are equal within experimental error/

Note also that the magnitudes of the two main elevon

effects are also similar, although not indistinguishable

within experimental error. If we use the average

magnitude of the four two-way interaction terms

(0.00042) to represent the magnitude of all four terms,

we can simplify equation 3 considerably. Within

experimental error, equation 3 reduces to

CMXS = 0.00267 + 0.00097A

- 0.02248(A- B)

+ 0.00042[(A - B)(F - E)]

(4)

This has the general form of

C_S = b 0 + blA + (b 2 + b3x2)x 1 (5)

where the bi values are numerical constants, A is left

elevon deflection as before, xl is a new variable

representing the differential elevon deflection - left

elevon minus right - and x2 is another new variable

representing F-E, the difference between the categorical

variables describing speed brake and landing gear

deployment, respectively. The variable x2 takes on

three discrete values: 0 when either the landing gear

and the speed brake are both deployed or neither

deployed, +2 when the speed brake is deployed and the

landing gear is retracted, and -2 when the landing gear

is deployed and the speed brake is not deployed. The

picture that emerges, then, is that for a given deflection

of the left elevon, A, the roll moment is a simple linear

function of differential elevon setting with a slope that

depends on the speed brake and landing gear

deployment. A given change in differential elevon

setting has the most effect on roll moment when the

speed brake is deployed and the landing gear is

retracted, the least effect when the gear is deployed and

the brake is not, and an intermediate effect when both

are deployed or both are retracted. Gear and brake

therefore serve as "gain factors" to alter the sensitivity

of the elevon's roll authority on approach. With gear

down for approach (E = 1), deploying the speed brake

desensitizes roll moment with respect to differential

elevon setting, making that approach more stable in that

the vehicle will be less sensitive to differential elevon

displacements. Retracting the speed brake would

augment the roll command authority, if additional

maneuverability was required on short notice during

approach, for example.

We emphasize that considerable insight into

underlying flight mechanisms can be achieved through

these simple two-level factorial designs, and if
additional detail is needed to describe curvature in the

response functions for example, it is easy to augment

the two-level design with additional levels as needed.

In the meantime, the two-level full and fractional

factorials can efficiently separate a myriad of candidate

factors into what Professor George Box famously

distinguishes as the "vital few" and the "trivial many".

This, then, provides a rational basis for further study

that concentrates on the most important configuration

variables without wasting resources on those that have

relatively little influence.

Concludin_ Remarks

Fractional factorial experiment designs appear to

have a number of attractive features that are especially

relevant to configuration testing in wind tunnels. They

illuminate interactions among multiple configuration

variables that conventional OFAT methods can

overlook. In so doing, they reveal opportunities to

combine variable levels in ways that do not assume that

individual factor effects are strictly additive. This can

lead to substantial and unanticipated system

performance improvements.

Factorial designs also serve as useful building

blocks in more complex experiments. They can serve

as the basis of steepest-ascent optimization procedures

that rapidly identify design-space regions where

specific responses occur as extremums. Time-

consuming investigations geared to identify detailed

response behavior in the vicinity of important maxima

or minima can be reserved for design-space regions

where such maxima or minima have been efficiently

localized using factorial designs.

Factorial designs present the researcher with an

attractive alternative to the wholesale elimination of

candidate factors that is often otherwise required to

conform with inevitable resource constraints when there

is a large number of candidate configurations variables

in play and insufficient time to set every combination.

Retaining all candidate variables has the obvious

advantage that more factor effects can be examined, but

also the subtle advantage that effects that may not have

a large direct influence on system response can

nonetheless influence the sensitivity of system response

to changes in some other variable. Factorial designs

increase the probability of detecting such effects by

retaining all candidate factors in the study while simply
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eliminatingcombinationsof themthat contribute
relativelylittle to the understandingof the most
importantmaineffectsandinteractions.

Factorialdesignsprovidea pathfor efficiently
addingadditionaldatawheninitial datasetsare
inadequatetounambiguouslyresolveeffectsofinterest.
Thissavestheresourcesthatmightotherwisebewasted
if it werenecessarytostartcompletelyfromscratchin
suchcircumstances.

Thereisa directrelationshipbetweentheeffects
thatarequantifiedinfactorialconfigurationstudiesand
thecoefficientsofresponsemodelsthatcanbeusedto
predictresponsesforothercombinationsof variables
besidesthosephysicallysetin theexperiment.These
responsemodelscanoftenyieldsurprisinginsightsinto
theunderlyingphysicalmechanismsthatgovernthe
responseofthesystem.
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